Theory of perturbed equilibria for solving the Grad-Shafranov equation

نویسندگان

  • L. E. Zakharov
  • A. Pletzer
چکیده

The theory of perturbed magnetohydrodynamic equilibria is presented for di erent formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to di erent constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Grad-Shafranov equation with spectral elements

The development of a generalized two dimensional MHD equilibrium solver within the nimrod framework [1] is discussed. Spectral elements are used to represent the poloidal plane. To permit the generation of spheromak and other compact equilibria, special consideration is given to ensure regularity at the geometric axis. The scalar field Λ = ψ/R is used as the dependent variable to express the Gr...

متن کامل

A Family of Analytic Equilibrium Solutions for the Grad-Shafranov Equation

A family of exact solutions to the Grad-Shafranov equation, similar to those described by Atanasiu et al. [C. V. Atanasiu, S. Günter, K. Lackner, I. G. Miron, Phys. Plasmas 11 3510 (2004)], is presented. The solution allows for finite plasma aspect ratio, elongation and triangularity, while only requiring the evaluation of a small number of well-known hypergeometric functions. Plasma current, p...

متن کامل

Numerical Technique Based on Extended Boundary Node Method for Solving Grad-Shafranov Equation

The extended boundary node method (X-BNM) has been applied to a boundary-value problem of the Grad-Shafranov (G-S) equation and its performance has been numerically investigated by comparing with the dual reciprocity boundary element method (DRM). The result of computations shows that the accuracy of the X-BNM is higher than that of the DRM. Therefore, it is found that the X-BNM might be a powe...

متن کامل

Comment on "Solitonlike solutions of the Grad-Shafranov equation".

In the above entitled recent publication by Giovanni Lapenta [Phys. Rev. Lett. 90, 135005 (2003) ] it is claimed construction of a new class of solitonlike solutions for the Grad-Shafranov equation in plane geometry. It is proved here that, because of the mathematically erroneous choice∇p = |Ψ|Ψ∇Ψ for an analytic continuation of the poloidal magnetic flux-function Ψ in the complex plane (p is t...

متن کامل

Numerical Approach Based on Extended Boundary Node Method for Solving Grad-Shafranov Equation

The boundary element method (BEM) is one of numerical methods for the boundary-value problem of partial differential equations and has been so far used in the fields of plasma and fusion science. For example, the BEM has been adopted for solving the Grad-Shafranov (G-S) equation which describes the magnetohydrodynamics equilibrium in an axisymmetric plasma [1]. On the other hand, Mukherjee et a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999